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Abstract

This paper describes a portable benchmark suite that assesses the ability of cluster
networking hardware and software to overlap MPI communication and computation.
The Communication Offload MPI-based Benchmark, or COMB, uses two different
methods to characterize the ability of messages to make progress concurrently with
computational processing on the host processor(s). COMB measures the relationship
between overall MPI communication bandwidth and host CPU availability. In this pa-
per, we describe the two different approaches used by the benchmark suite, and we
present results three different Myrinet protocol stacks that are used to support the Por-
tals 3.0 message passing interface. We demonstrate the utility of the suite by examining
the results and comparing and contrasting the different protocol stacks.

1 Introduction

Recent advances in networking technology for cluster computing have led to signifi-
cant improvements in achievable latency and bandwidth performance. Many of these
improvements are based on an implementation strategy called Operating System By-
pass, or OS-bypass, which attempts to increase network performance and reduce host
CPU overhead by offloading communication operations to intelligent network inter-
faces. These interfaces, such as Myrinet [2], are capable of “user-level” networking,
that is, moving data directly from an application’s address space without any involve-
ment of the operating system in the data transfer.

Unfortunately, the reduction in host CPU overhead, which has been shown to be



the most significant factor in effecting application performance [6], has not been real-
ized in most implementations of MPI [7] for user-level networking technology. While
most MPI microbenchmarks can measure latency, bandwidth, and host CPU overhead,
they fail to accurately characterize the actual performance that applications can ex-
pect. Communication microbenchmarks typically focus on message passing perfor-
mance relative to achieving peak performance of the network and do not characterize
the performance impact of message passing relative to both the peak performance of
the network and the peak performance available to the application.

We have designed and implemented a portable benchmark suite called COMB,
the Communication Offload MPI-based Benchmark, that measures the ability of an
MPI implementation to overlap computation and MPI communication. The ability to
overlap is influenced by several system characteristics, such as the quality of the MPI
implementation and the capabilities of the underlying network transport layer. For
example, some message passing systems interrupt the host CPU to obtain resources
from the operating system in order to receive packets from the network. This strategy
is likely to adversely impact the utilization of the host CPU, but may allow for an
increase in MPI bandwidth. We believe our benchmark suite can provide insight into
the relationship between network performance and host CPU performance in order to
better understand the actual performance delivered to applications.

2 Approach

Our main goal in developing this benchmark suite was to be able to measure overlap
as accurately as possible while still being as portable as possible. We have chosen to
develop COMB with the following characteristics:

� One process per node

� Two processes perform communication

� Either process may track bandwidth

� One process performs simulated computation

� Both processes perform message passing

� Primary variable is the simulated computation time

The COMB benchmark suite consists of two different methods of measuring the
performance of a system, each with a different perspective on characterizing the ability
to overlap computation and MPI communication. This multi-method approach cap-
tures performance data on a wider range of the systems and allows for results from
each benchmark to be validated and/or reinforced by the other. The first method, the
Polling Method, allows for the maximum possible overlap of computation and MPI
communication. The second method, the Post-Work-Wait Method tests for overlap un-
der practical restrictions on MPI calls. The following sections describe each of these
methods in more detail.



read current time
for( i = 0 ; i � work/poll factor ; i++ ) �

for( j = 0 ; j � poll factor ; j++) �
/* nothing */�

if(asynchronous receive is complete) �
start asynchronous reply(s)
post asynchronous receive(s)�

�
read current time

Figure 1: Polling Method Psuedocode For Worker Process
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Figure 2: Overview of Polling Method

2.1 Polling Method

The polling method uses two processes, one process, the worker process, counts cycles
and performs message passing. A second, support process, runs on the second node
and only performs message passing. Figure 1 presents pseudo code for the worker
process. All receives are posted before sends. Initial setup of message passing as well
as conclusion of same are omitted from the figure. Additionally, Figure 2 provides a
pictorial representation of the method.

This method uses a ping-pong communication strategy with messages flowing in
both directions between sender node and receiver. Each process polls for message
arrivals and propagates replacement messages upon completion of earlier messages.
After a predetermined amount of computation, bandwidth and CPU availability are
computed. The polling interval can be adjusted to demonstrate the trade-off between
bandwidth and CPU availability. Because this method never blocks waiting for mes-
sage completion it provides an accurate report of CPU availability.

As can be seen in Figure 1, after a fixed number of iterations in the inner loop
the worker process polls for receipt of the next message. The number of iterations of
the inner loop determines the time between polls and, hence, determines the polling



interval. If a test for completion is negative, the worker process will iterate through
another polling interval before testing again. If a test for completion is positive, the
process will post related messaging calls and will similarly address any other received
messages before entering another polling interval. The support process sends messages
as fast as they are consumed by the receiver.

We vary the polling interval to elicit changes in CPU availability and bandwidth.
When the polling interval becomes sufficiently large all possible message transfers may
complete during the polling interval and communication then must wait, resulting in
decreased bandwidth.

The polling method uses a queue of messages at each node in order to maximize
achievable bandwidth. When either process detects that a message has arrived, it it-
erates through the queue of all messages that have arrived, sending replies to each of
these messages. When we set the queue size to one, a single message passed between
the two nodes then the polling method acts as a standard ping-pong test and maximum
sustained bandwidth will be sacrificed.

The benchmark actually runs in two phases. During the first, dry run, phase the
amount of time to accomplish a predetermined amount of work in the absence of com-
munication is recorded. The second phase records the time for the same amount of
work while the two processes are exchanging messages. The CPU availability is re-
ported as:

availability �
time( work without messaging )

time( work plus MPI calls while messaging )

The polling method reports message passing bandwidth and CPU availability, both
as functions of the polling interval.

2.2 Post-Work-Wait Method

The second method, the post-work-wait method or PWW, also uses bi-directional com-
munication. However, this method serializes MPI communication and computation.
The worker process posts a collection non-blocking MPI messages (sends and re-
ceives), performs computation (the work phase), and waits for the messages to com-
plete. This strict order introduces a significant (and reasonable) restriction at the ap-
plication level. Because the application does not make any MPI calls during its work
phase, the underlying communication system can only overlap MPI communication
with computation if it requires no further intervention by the application in order to
progress communication. In this respect, the PWW method detects whether the un-
derlying communication system exhibits application offload. In addition, as we will
describe, this benchmark identifies where host cycles are spent on communication.

Figure 3 presents a pictorial representation of the PWW method. This method is
similar to the polling method in that each process sends and receives messages, but
only the worker process monitors CPU cycles.

With respect to communication, the PWW method performs message handling in
a repeated pair of operations: 1) make non-blocking send and receive calls and 2)
wait for the messaging to complete. Both processes simultaneously send and receive a
single message. The worker process performs work after the non-blocking calls before
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Figure 3: Post-Work-Wait (PWW) Method

waiting for message completion. As in the Polling method, the work interval is varied
to effect changes in CPU availability and bandwidth.

The PWW method collects wall clock durations for the different phases of the
method. Specifically, the method collects individual durations for i) the non-blocking
call phase, ii) the work phase, and iii) the wait phase. Of course, the method also
records the time necessary to do the work in the absence of messaging. These phase
durations are useful in identifying communication bottlenecks or other causes of poor
communication.

It is worth emphasizing here that the terms “work interval” and “polling interval”
represent the foremost difference between the PWW method and the Polling method.
After the polling interval, the Polling method checks whether or not there are arrived
messages that require response but in either case “computation” then proceeds via the
next polling interval. In contrast, after PWW’s “work interval,” the worker process
waits for the current batch of messages even if the messages have not begun to arrive,
such as in the case of a very short work interval. This is one of the most significant
differences between the two methods and is key to correctly interpreting the results.

3 Platform Description

In this section we provide a description of the hardware and software systems from
which our data was gathered.

Each node contained a 617 MHz Alpha EV67 processor with 256 MB of main
memory and Myrinet [2] LANai 9 network interface card (NIC). Nodes were connected
using a 64-port Mesh64 switch.

Results were gathered using the Portals 3.0 [5, 3] software designed and developed
by Sandia National Labs and the University of New Mexico. Portals is an interface for
data movement designed to support massively parallel commodity clusters, such as the
Computational Plant [4]. We have also ported the MPICH implementation of MPI to
Portals 3.0.

We gathered results from two different implementations of Portals for Myrinet. The
first implementaiton of Portals for Myrinet used in our experiments is kernel-based.
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Figure 4: Half round trip latency performance.

The user-level Portals library interfaces to a Linux kernel module that processes Portals
messages. This kernel module in turn interfaces to another kernel module that provides
reliability and flow control using a protocol called RMPP (cite Rolf’s dissertation).
This kernel module works with any Linux network device that can send raw packets.
For this kernel-based implementation, we have a Sandia-developed Myrinet Control
Program (MCP) running on the Myrinet NIC that simply acts as packet engine. This
particular implementation of Portals does not employ any OS-bypass techniques. This
implementation is currently running in production on all the CplantTM clusters at Sandia,
the largest of which is 1792 nodes.

In our second implementation of Portals for Myrinet, all reliability and flow control
is performed within the MCP. Processing of Portals messages can occur either in the
MCP or via a Linux kernel module. A process can choose to have all processing of
Portals messages occur on the card, which is expected to incur minimal host processor
overhead, or have intitial processing done in an interrupt handler on the host. Once
Portals processing has occurred in the interrupt handler, data is transferred directly
from the the network into user space. Both of these methods of processing a Portals
message employ OS-bypass, since the OS is not involved in the transfer of data once the
final destination is determined. This is an experimental implementation of Portals that
is currently running on a 10-node development system. It is currently limited to being
able to send and receive messages into a 4 MB region of memory with a physically
contiguous address space.
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Figure 5: One-way bandwidth performance.

4 Results and Analysis

Figure 4 shows the MPI one-half round trip latency performance using a standard ping-
pong microbenchmark. The zero-length MPI latency is 17µsecfor the Portals-based
MCP where processing is handled entirely in the NIC, 48µsecfor the Portals MCP with
processing in the kernel, and 66µsecfor the Portals over RMPP implementation. These
numbers indicate that the cost of having the host processor involved in processing Por-
tals messages via an interrupt routine in the kernel is significant.

Figure 5 shows the MPI one-way message-passing bandwidth. The asymptotic MPI
bandwidth is 161 MB/s for both NIC and kernel processing for the Portals MCP, and
68 MB/s for Portals over RMPP. The curve for NIC processing in the Portals MCP
is slightly steeper for smaller messages. For the RMPP implementation, the cost of
copying packets from kernel-space to user-space is evident.

Figures 6 and 7 show the bandwidth calculated by the polling method. Initially
, these bandwidth graphs exhibit a plateau of maximum sustained bandwidth until a
point of steep decline. The point of steep decline occurs when the poll interval becomes
large enough that all messages in flight are completed during the poll interval. When
this happens, messages are delayed until the occurrence of the next poll. We see similar
behavior for the PWW bandwidth calcuation in Figure 8.

Figures 9 and 10 show results of the polling method for 5 KB and 100 KB re-
spectively. In these graphs, availability remains low and relatively stable until it rises
steeply. Before the steep increase, polling is so frequent that messages are processed
as soon as they arrive. This keeps the system active with message handling and avail-
ability is kept low. CPU availability steeply climbs when the poll interval becomes
infrequent enough to cause stops in the flow of messages. For the RMPP-based imple-
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Figure 6: Polling method: bandwidth for 5 KB messages.
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Figure 7: Polling method: bandwidth for 100 KB messages.
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Figure 9: Polling method: CPU availability for 5 KB messages.
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Figure 10: Polling method: CPU availability for 100 KB messages.

mentation, lack of message handling equates to lack of interrupts and the application
no longer competes for CPU cycles.

The PWW availability graphs, Figures 11 and 12, lack the initial plateau as seen
in the polling availability graphs. This difference is due to the fact that the polling
method returns to work (i.e., to another polling interval) if a message has not yet ar-
rived, whereas the PWW method waits regardless of what the cause is for the delay.
This wait while delayed functionality suppresses apparent CPU availability until the
work interval becomes sufficiently long to fill the delay period of time.

4.1 CPU Overhead

We now examine the work phase of the PWW method. The duration of the work phase
is of interest when considering communication overhead. Depending on the system,
a separate process or the kernel itself could facilitate communication while competing
with the user application for CPU time. In such cases, the time to complete the work
phase during messaging will take longer than the time to complete the same work in
the absence of a competing process.

Figure 13 shows the time to complete work as a function of work interval. Recall
that both methods time the duration needed to complete work with and without com-
munication. In Figure 13, the work with message handling takes a greater amount of
time relative to work without message handling; the difference is due to the overhead
of interrupts needed to process Portals messages.

In contrast, Figure 14 displays results for the Portals MCP using kernel processing
and shows much less communication overhead in that the time to do work is the same
regardless of the presence or absence of communication. As expected, Figure 15 shows
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Figure 11: PWW method: CPU availability for 5 KB messages.
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Figure 12: PWW method: CPU availability for 100 KB messages.
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Figure 13: PWW Method: CPU overhead for RMPP.
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Figure 14: PWW Method: CPU overhead for P3 MCP (kernel).
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Figure 15: PWW Method: CPU overhead for P3 MCP (NIC).

virtually no overhead for communication since all message processing is done on the
Myrinet NIC. The lack of a time gap between work with and without message handling
is the general indicator of a system that lacks communication overhead.

5 Related Work

Previous work related to assessing the ability of platforms to overlap computation and
MPI communication have simply characterized systems as being able to provide over-
lap for various message sizes [8]. Our benchmark suite extends this base functionality
in an attempt to gather more detailed information about the degree to which overlap
can occur and the effect that overlap can have on latency and bandwidth performance.
For example, our benchmark suite is able to help assess the overall benefit of increas-
ing the opportunity to overlap computation and MPI communication at the expense of
decreasing raw MPI latency performance.

The netperf [1] benchmark is commonly used to measure processor availability
during communication. Our benchmarks uses the same general approach as that used in
netperf. Both benchmarks measure the time taken to execute a delay loop on quiescent
system; then measure the time taken for the same delay loop while the node is involved
in communication; and report ratio between the first and second measurement as the
availability of the host processor during communication. However, in netperf, the code
for the delay loop and the code used to drive the communication are run in two separate
processes on the same node.

Netperf was developed to measure the performance of TCP/IP and UDP/IP. It works
very well in this environment. However, there are two problems with the netperf ap-
proach when applied to MPI programs. First, MPI environments typically assume that
there will be a single process running on a node. As such, we should measure proces-
sor availability for a single MPI task while communication is progressing in the back-
ground (using non-blocking sends and receives). Second, and perhaps more important,



the netperf approach assumes that the process driving the communication relinquishes
the processor when it waits for an incoming message. In the case of netperf, this is
accomplished using a select call. Unfortunately, many MPI implementations use OS-
bypass. In these implementations, waiting is typically implemented using busy wait-
ing. (This is reasonable, given the previous assumption that there is only one process
running on the node.)

6 Summary

In this paper, we have described the COMB benchmark suite. We have described the
methods and approach of COMB and demonstrated its utility in providing insight into
the underlying implementation of communication system.

Of the two methods used in the suite, the polling method is distinguished by pro-
viding a basis for viewing a systems performance in an unfettered manner. The polling
method makes periodic calls to the MPI library and logs computation whenever the user
application does not need to progress messaging. The result is that maximum overlap
between communication and computation is allowed As such, the polling method pro-
vides a basis for an unqualified or general comparison between different systems.

In contrast, the PWW method identifies actual limitations with respect to applica-
tion offload. and provides timing information which identifies where the hosts spent
time on communication, such as overhead during the work phase. As such, the PWW
method provides performance comparisons in many areas and provides a means to help
identify bottlenecks during the post-work-wait cycle.

We believe COMB is a useful tool for the analysis of cluster communication perfor-
mance. We have used it extensively to benchmark several systems, both development
and production, and it has provided new insights into the effects of different implemen-
tation strategies.
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